Patents

Publication number: 20200353995
Abstract: An assembly includes a hinge pillar having an inner member and an outer member. The assembly includes a brace between the inner member and the outer member, the brace having a side portion fixed to the outer member and a front portion fixed to the inner member.

Publication number: 20200256764
Abstract: A method includes simulating an impact between a simulated wheel and a simulated vehicle assembly, the simulated vehicle assembly including a simulated vehicle component that is a computer-aided-design model of a vehicle component. The method includes determining, based on the simulated impact, an impact angle between the simulated wheel and the simulated vehicle assembly. The method includes impacting an impactor with the vehicle component at the impact angle.

Publication number: 20200062319
Abstract: An assembly includes a subframe, a rocker, a battery cage supported by the rocker, and a battery supported by the battery cage. The assembly includes a reinforcement bolted to the rocker and positioned to be along a load path through the subframe resulting from a vehicle frontal impact.

Publication number: 20180370569

Abstract: A vehicle includes a body having a first rail and an upper rail spaced from the first rail. The upper rail has a base portion and a top prong and a bottom prong each extending from the base portion. The vehicle includes a bumper connected to the first rail and to the top prong, and a subframe connected to the bottom prong.

Publication number: 20170080980
Abstract: A vehicle sill reinforcement includes a first elongate member and a second elongate member. Each of the first elongate member and the second elongate member includes steps and walls disposed in alternating arrangement along an axis. The walls of the first elongate member are fixed to the walls of the second elongate member. The steps of the first elongate member and the steps of the second elongate member are aligned along the axis and define cavities therebetween. The steps and walls of the sill reinforcement resist buckling in response to both vertical and horizontal components of impact force applied to the sill reinforcement.

Publication number: 20100201112
Abstract: A system for providing protection to a vehicle occupant during a side impact event is disclosed. The system includes an outer panel, which may be a vehicle door outer sheet metal, an inner panel, which may be a vehicle door trim, and an elongated structural member disposed between the outer panel and the inner panel. The elongated structural member is generally disposed perpendicularly with respect to the inner and outer panels and is in general alignment with the pelvic area of the adjacent occupant. The elongated structural member may have an I-beam configuration which extends from the outer panel to the inner panel in the occupant's pelvic zone. The elongated structure may progressively crush during the impact event while pushing the occupant. During an impact event, the elongated structure is pushed vehicle-inward and provides pelvic support to the adjacent occupant.

Publication number: 20080258505
Abstract: A vehicle door glass blocker assembly including a blocking bracket securable to a vehicle door frame panel, and a blocking edge integrally formed with the blocking bracket, being substantially normal to a vertical edge of a vehicle window, and being capable of at least partially shattering the vehicle window when the window impacts the blocking edge during a vehicle crash event. A blocking protrusion may be coupled to the blocking bracket, be longitudinally disposable between the vehicle window and a vehicle door latch mechanism, and be capable of at least partially preventing transverse displacement of the vehicle window. A support bracket may be secured to the blocking bracket, and a glass run extrusion may be secured to the support bracket, be adapted to accept a vertical edge of the vehicle window, and be capable of reducing vibrations in the vehicle window.

Publication number: 20080079273
Abstract: An underrun energy-absorbing structure (14) (“structure”) for a vehicle (10) includes a rail member (16), a deformable crush tube (18), and a plate (20). Rail member (16) is formed from an inboard panel (22) and an outboard panel (24). Crush tube (18) is sandwiched between inboard panel (22) and outboard panel (24) and extends perpendicularly from rail member (16). Plate (20) is adjacent to crush tube (18) and extends perpendicularly from rail member (16). Plate (20) is supported by crush tube (18) during a vehicle collision.

Publication number: 20050275198
Abstract: An automotive overhead airbag assembly is provided including an airbag mounted on an inside surface of a vehicle roof at an airbag mount position. The airbag has an airbag stored condition and an airbag deployed position and expands downwards from said vehicle roof when in the airbag deployed position. The assembly includes at least one wing element having a first wing mounting edge mounted to the vehicle roof and a second wing mounting edge mounted to a lower deployed portion of said airbag. The first wing mounting edge extends in a transverse direction from the airbag mount position. The at least one wing element includes a wing stored condition and a wing deployed position. The at least one wing element restricts forward motion of the airbag when the airbag is in the deployed position. The assembly includes a trampoline surface formed by the at least one wing element when the at least one wing element is in said wing deployed position.

Publication number: 20100161168
Abstract: A method for rollover sensing (12) that may be used in the determination of when to deploy restraints in a vehicle is disclosed herein. The method for rollover sensing (12) may include lateral acceleration sensors (22), a roll rate sensor (18), and a roll angle detector (20). A control circuit (16) determines a roll moment of inertia as a function of lateral acceleration, a trip point length as a function of the lateral acceleration, and a trip point angle as a function of the lateral acceleration. The control circuit (16) also determines a rollover threshold in response to a roll rate signal, a roll angle signal, the trip point length, the roll moment of inertia, and the trip point angle. The control circuit (16) further generates a control signal for a deployment circuit in response to the rollover threshold.

Publication number: 20060178808
Abstract: A rollover sensing system (12) that may be used in the determination of when to deploy restraints in the vehicle. The rollover sensing system (12) may include lateral acceleration sensors (32), a roll rate sensor (18), and a roll angle detector (20). A control circuit (16) determines a roll moment of inertia as a function of the lateral acceleration, a trip point length as a function of the lateral acceleration and a trip point angle as a function of the lateral acceleration. The control circuit (16) determines a rollover threshold in response to the roll rate signal, the roll angle signal, the trip point length, the roll moment of inertia, and the trip point length. The control circuit generates a control signal for the deployment circuit in response to the rollover threshold.

INTELLIGENT VEHICLE ROLLOVER DETECTION METHODS AND SYSTEMS

Publication number: 20060064218
Abstract: Intelligent vehicle rollover detection systems and methods are claimed and described. An embodiment may comprise various data sensors to sense various signals and a control circuit to receive the signals. In some embodiments, the control circuit may be adapted to provide a vehicle unstable signal to activate a first occupant restraint system and a rollover detection signal to activate a second occupant restraint system. In some embodiments, the control circuit may also determine an updated threshold and a reduced threshold, and generate a rollover detection signal in response to at least one of the updated threshold and a reduced threshold. Other embodiments are also claimed and described.

Publication number: 20030149500
Abstract: A system and method for assembling a mesh model for engineering analysis by a user is provided. The system includes a user computer system, a remotely located computer system and a data storage means. The method includes the steps of selecting a plurality of component parts having a best practice mesh model format and selecting a predetermined property for each of the selected component parts, wherein the predetermined property is selected from a best practice library stored on the data storage means. The method also includes the steps of determining if the mesh model for each of the selected component parts meets a predetermined mesh quality condition using a best practice mesh quality checking software program.